Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search.

نویسندگان

  • Andrew J Lee
  • Masayuki Endo
  • Jamie K Hobbs
  • Christoph Wälti
چکیده

Genomic integrity, when compromised by accrued DNA lesions, is maintained through efficient repair via homologous recombination. For this process the ubiquitous recombinase A (RecA), and its homologues such as the human Rad51, are of central importance, able to align and exchange homologous sequences within single-stranded and double-stranded DNA in order to swap out defective regions. Here, we directly observe the widely debated mechanism of RecA homology searching at a single-molecule level using high-speed atomic force microscopy (HS-AFM) in combination with tailored DNA origami frames to present the reaction targets in a way suitable for AFM-imaging. We show that RecA nucleoprotein filaments move along DNA substrates via short-distance facilitated diffusions, or slides, interspersed with longer-distance random moves, or hops. Importantly, from the specific interaction geometry, we find that the double-stranded substrate DNA resides in the secondary DNA binding-site within the RecA nucleoprotein filament helical groove during the homology search. This work demonstrates that tailored DNA origami, in conjunction with HS-AFM, can be employed to reveal directly conformational and geometrical information on dynamic protein-DNA interactions which was previously inaccessible at an individual single-molecule level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RecA filament sliding on DNA facilitates homology search

During homologous recombination, RecA forms a helical filament on a single stranded (ss) DNA that searches for a homologous double stranded (ds) DNA and catalyzes the exchange of complementary base pairs to form a new heteroduplex. Using single molecule fluorescence imaging tools with high spatiotemporal resolution we characterized the encounter complex between the RecA filament and dsDNA. We p...

متن کامل

On the Mechanism of Homology Search by RecA Protein Filaments.

Genetic stability is a key factor in maintaining, survival, and reproduction of biological cells. It relies on many processes, but one of the most important is a homologous recombination, in which the repair of breaks in double-stranded DNA molecules is taking place with a help of several specific proteins. In bacteria, this task is accomplished by RecA proteins that are active as nucleoprotein...

متن کامل

Developing Single-Molecule TPM Experiments for Direct Observation of Successful RecA-Mediated Strand Exchange Reaction

RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing an...

متن کامل

RecA-DNA helical complexes in genetic recombination.

RecA protein (product of the recA gene), without the help of any other protein, is able in an ATP-dependent reaction to mediate the entire recombination process including the search for homology, homologous pairing and strand transfer (for a review see Radding, 1982; Howard-Flanders et al., 1984b). In this short review, we describe RecA-DNA complexes and how formation of a RecA complex with sin...

متن کامل

DNA substrate requirements for stable joint molecule formation by the RecA and single-stranded DNA-binding proteins of Escherichia coli.

In reactions between linear single-stranded DNAs (ssDNAs) and circular double-stranded DNAs (dsDNAs), stable joint molecule formation promoted by the recA protein (RecA) requires negative superhelicity, a homologous end, and an RecA-ssDNA complex. Linear ssDNAs with 3'-end homology react more efficiently than linear ssDNAs with 5'-end homology. This 3'-end preference is explained by the finding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ACS nano

دوره 12 1  شماره 

صفحات  -

تاریخ انتشار 2018